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Pseudomonas aeruginosa is a major bacterial pathogen commonly associated with chronic lung infections in cystic fibrosis (CF).
Previously, we have demonstrated that the type IV pilus (Tfp) of P. aeruginosa mediates resistance to antibacterial effects of pul-
monary surfactant protein A (SP-A). Interestingly, P. aeruginosa strains with group I pilins are O-glycosylated through the TfpO
glycosyltransferase with a single subunit of O-antigen (O-ag). Importantly, TfpO-mediated O-glycosylation is important for vir-
ulence in mouse lungs, exemplified by more frequent lung infection in CF with TfpO-expressing P. aeruginosa strains. However,
the mechanism underlying the importance of Tfp glycosylation in P. aeruginosa pathogenesis is not fully understood. Here, we
demonstrated one mechanism of increased fitness mediated by O-glycosylation of group 1 pilins on Tfp in the P. aeruginosa
clinical isolate 1244. Using an acute pneumonia model in SP-A�/� versus SP-A�/� mice, the O-glycosylation-deficient �tfpO
mutant was found to be attenuated in lung infection. Both 1244 and �tfpO strains showed equal levels of susceptibility to SP-A-
mediated membrane permeability. In contrast, the �tfpO mutant was more susceptible to opsonization by SP-A and by other
pulmonary and circulating opsonins, SP-D and mannose binding lectin 2, respectively. Importantly, the increased susceptibility
to phagocytosis was abrogated in the absence of opsonins. These results indicate that O-glycosylation of Tfp with O-ag specifi-
cally confers resistance to opsonization during host-mediated phagocytosis.

Pseudomonas aeruginosa is one of the most common causes of
nosocomial infections in humans, especially chronic infection

in patients with cystic fibrosis (CF) and chronic obstructive pul-
monary disease (1–3). It is also a primary cause of death and sepsis
in immunocompromised individuals (4, 5). Antibiotic-resistant
P. aeruginosa is a serious clinical problem that can lead to denial
for lung transplant, infection, and death (6). Thus, there is an
urgent need to explore alternative strategies, including the possi-
bility of augmenting the expression of pulmonary innate immu-
nity proteins to manage P. aeruginosa-mediated infections.

Bacterial type IV pilus (Tfp) is important for multiple cellular
functions, including surface motility, microcolony and biofilm
formation, host-cell adhesion, cell signaling, DNA uptake by nat-
ural transformation, and phage attachment (7). Tfp is also an
important virulence factor of P. aeruginosa (8). P. aeruginosa can
be separated into five groups based on the presence or absence of
varying downstream accessory genes flanking the pilin gene, pilA
(9, 10). The PilA pilins of these five P. aeruginosa groups have
different amino acid sequences, lengths, and presence of post-
translational modifications (9–13). The downstream accessory
genes function in either pilin posttranslational glycosylation
(group I and group IV) or modulation of pilus assembly (group III
and group V) (9, 10, 14, 15).

Group I alleles (e.g., strain 1244), which contain a glycosyl-
transferase (PilO/TfpO) that glycosylates each pilin of Tfp with
one subunit of O-antigen (O-ag), are frequently associated
with CF and environmental isolates (10). The O-ag repeating
subunit was noted to be the trisaccharide pseudaminic acid
(5N�OHC47NFmPse)-(2¡4)-xylose-(1¡3)-N-acetylfucosamine
(FucNAc), bound to serine residue 148 at the carboxyl terminal of
the pilin (16, 17). The O-ag glycan decorating PilA is the product
of the same O-ag biosynthetic pathway for the lipopolysaccharide
(LPS) O-ag of the same strain (18). Group II alleles, which do not

contain an accessory flanking gene, include common laboratory
strains PAO1 and PAK (10). Group III alleles contain the acces-
sory gene tfpY and include the human clinical isolate PA14 (10).
PA14 was shown to produce a lower 50% lethal dose (LD50) and a
higher mortality rate than PAO1 (19). This difference in virulence
was partially attributed to ybtQ, a gene present in PA14 but not
PAO1 (19). Also, PA14 contains the pathogenicity islands PAPI-1
and PAPI-2, which have been shown to contribute to virulence
(20, 21). Group IV alleles contain two accessory genes, tfpW and
tfpX (10). The PilA pilins of group IV alleles are glycosylated with
a homo-oligomer of �-1,5-linked D-arabinofuranose, which is
similar to the lipoarabinomannan polymer found in the cell wall
of Mycobacterium spp. (12). Group V alleles contain the accessory
TfpZ gene (10). TfpY of group III alleles and TfpZ of group V
alleles have been shown to be important for the surface expression
of PilA (14).

Most recently, we have demonstrated that Tfp of P. aeruginosa
mediates resistance to antibacterial effects of pulmonary surfac-
tant protein A (SP-A), an important innate immunity protein that
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induces opsonization and membrane permeability in microbes
(22). Despite reports showing frequent association of P. aerugi-
nosa strains in the TfpO-expressing group I alleles with CF and the
importance of TfpO-mediated glycosylation as a virulence factor
in mouse lung infection (10, 11), the molecular basis behind the
importance of Tfp glycosylation in P. aeruginosa pathogenesis,
especially in the context of alveolar epithelium, is not fully under-
stood. In the present study, we examined the mechanisms by
which Tfp glycosylation with O-ag contributes to lung infection.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The clinical P. aeruginosa strain
1244, the TfpO-deficient mutant strain 1244G7 (�tfpO strain), and the
genetically complemented strain (�tfpO-comp strain) were generously
provided by Peter Castric (Duquesne University) (11) (Table 1). Labora-
tory wild-type strains PAO1 and PAK and their �rfbC mutants (Table 1)
were generous gifts from Reuben Ramphal (University of Florida). The
�rfbC mutant was constructed in strain 1244 by gene replacement with a
gentamicin resistance gene cassette as described previously (23) (Table 1).
Strain 1244 was grown in plain Luria-Bertani (LB) broth (Fisher Scien-
tific); the �tfpO and �rfbC strains were grown in LB broth containing 75
�g of gentamicin (Life Technologies)/ml, and the �tfpO-comp strain was
grown in LB medium containing 200 �g of carbenicillin (Lab Scientific)/
ml at 37°C overnight. The strains were then stored at �80°C in 25%
glycerol (Sigma-Aldrich). Before each experiment, bacteria were streaked
from frozen stock onto LB agar with or without antibiotic for 18 h at 37°C.
One colony from this streak was then cultured in 5 ml of LB broth to
stationary phase to an optical density at 600 nm of �3.0 by using a Gene-
sys 10 UV spectrophotometer (Thermo Scientific).

Mouse infection assays. Wild-type C3H/HeN (SP-A�/�) mice were
purchased from Harlan Laboratories (Indianapolis, IN). Isogenic SP-
A�/� mice were gifts from Francis McCormack (University of Cincinnati
College of Medicine). Animal studies were carried out in strict accordance
with the protocol approved by the Institutional Animal Care and Use
Committee at the University of Illinois at Urbana-Champaign. SP-A�/�

and SP-A�/� mice (groups of 10) were given a single intranasal inocula-
tion of 3 	 106 CFU of the parental clinical strain 1244 or the �tfpO
mutant. After 18 h, mouse lungs were harvested for histology (n 
 3) or
bacterial enumeration (n 
 7) as previously described (22, 24). For mor-
tality studies, animals (n 
 10) were monitored for up to 48 h. Moribund
animals that displayed rough hair coat, hunched posture, distended ab-
domen, lethargy, or inability to eat or drink were euthanized and counted
as dead.

In vivo phagocytosis assays. The phagocytosis rates between different
P. aeruginosa strains were compared using a modified gentamicin exclu-
sion assay as previously described (22, 24). Briefly, C3H/HeN and C3H
SP-A�/� mice (n 
 3) were given a single intranasal inoculation of 107

CFU of 1244 or �tfpO strain. After 90 min, mouse lungs were lavaged to
collect the alveolar macrophages and neutrophils. The white blood cells
were then incubated in phosphate-buffered saline (PBS) with 100 �g of

piperacillin (Sigma-Aldrich)/ml to kill the remaining extracellular bacte-
ria (25). Piperacillin was used instead of gentamicin because the �tfpO
mutant contains a gentamicin resistance cassette (11). The macrophages
were lysed with 1% Triton X-100 solution (Fisher Scientific) and serially
diluted for P. aeruginosa CFU enumeration. The ratio of CFU counts
between C3H/HeN and C3H SP-A�/� mice was computed for the fold
increase of phagocytosis mediated by SP-A. The changes in phagocytosis
were then normalized to 1244, which was set to the baseline value of 1.

Purification of hSP-A. Discarded lung washings from anonymous
alveolar proteinosis patients were generously provided by Francis McCor-
mack (University of Cincinnati College of Medicine). Pulmonary alveolar
proteinosis is a rare lung disease with abnormally high accumulation of
surfactant proteins that occurs within the alveoli (26). Human SP-A
(hSP-A) was purified as previously described (27). Briefly, raw lung wash-
ings, equilibrated with 1 mM CaCl2 (Sigma-Aldrich), were passed
through a Sepharose 6B column (GE Healthcare) laden with mannose
(Sigma-Aldrich). The captured SP-A was then eluted using elution buffer
(2 mM EDTA, 5 mM Tris-HCl [pH 7.4]). The eluted fractions were dia-
lyzed using the dialysis buffer (150 mM NaCl, 5 mM Tris-HCl [pH 7.4]) to
remove the EDTA. The purity of hSP-A preparations was confirmed by
Coomassie blue analysis.

Murine macrophage culture and in vitro phagocytosis assays. Mu-
rine RAW 264.7 macrophages (ATCC TIB-71) were maintained in Dul-
becco modified Eagle medium (DMEM; Corning) supplemented with
10% fetal bovine serum (Phoenix Research Products) at 5% CO2 and 37°C
(28). The phagocytosis rates between different P. aeruginosa strains were
compared using the modified gentamicin exclusion assay. Briefly, 106

RAW 264.7 macrophages/ml were plated in six-well cell culture plates
overnight at 37°C and 5% CO2. For dose-dependent SP-A-mediated
phagocytosis, P. aeruginosa strains were preincubated with 12.5 or 25 �g
of hSP-A/ml in the presence of 2 mM CaCl2 for 1 h in a rotating incubator
at 37°C. For time-dependent SP-A-mediated phagocytosis, P. aeruginosa
strains were preincubated with 25 �g of hSP-A/ml in the presence of 2
mM CaCl2 for 1, 6, or 12 h in a rotating incubator at 37°C. The resulting
mixture was then incubated with the RAW 264.7 cells at a ratio of 10
bacteria to 1 macrophage for 90 min. The macrophages were then washed
and incubated with DMEM with 100 �g of piperacillin/ml to kill the
remaining extracellular bacteria. The macrophages were lysed with 1%
Triton X-100 solution, and internalized bacteria were serially diluted for
enumeration. The ratio of CFU between treated and untreated bacteria
was computed for the fold increase of phagocytosis mediated by hSP-A.
The changes in phagocytosis were then normalized to strain 1244, which
was set to the baseline value of 1.

Opsonic phagocytosis assays with pulmonary opsonin SP-D (Novo-
protein, catalog no. C541) and circulatory opsonin mannose-binding lec-
tin 2 (MBL-2; Novoprotein, catalog no. C488) were performed by prein-
cubating P. aeruginosa strains with the opsonins in a rotating incubator at
37°C for 1 h before exposure to RAW 264.7 macrophages. Nonopsonic
phagocytosis studies were performed with the same volume of sterile PBS
as a substitute for opsonins.

TABLE 1 Bacterial strains and plasmids used in this study

P. aeruginosa strain Description
Source or
reference

1244 Wild type 11
1244G7 (�tfpO) Nonpolar gene replacement of the tfpO gene in the wild-type strain 1244 with a gentamicin cassette 11
1244G7-comp (�tfpO-comp) �tfpO mutant complemented with a copy of wild-type gene in trans 11
1244�fgtA Nonpolar replacement of the fgtA gene in the wild-type strain 1244 with a gentamicin cassette This study
PAO1 Wild type 23, 44
PAO1�fgtA Nonpolar replacement of the fgtA gene in the wild-type strain PAO1 with a gentamicin cassette 23, 44
PAK Wild type 23, 44
PAK�fgtA Nonpolar replacement of the fgtA gene in the wild-type strain PAK with a gentamicin cassette 23, 44
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Membrane permeabilization assays. Membrane permeabilization ef-
fects of hSP-A on P. aeruginosa were observed using the thiol-specific
fluorophore ThioGlo (Calbiochem), as previously described (28, 29). Sta-
tionary-phase P. aeruginosa bacteria were washed and incubated with 50
�g of hSP-A/ml for 15 min at 37°C. For the ThioGlo assay, bacterium/
SP-A mixture was sedimented, and the bacterium-free supernatant was
incubated with 10 �M ThioGlo reagent. Fluorescence was measured using
an excitation wavelength of 405 nm and an emission wavelength of 535
nm. The fluorescence measurement was read using a SpectraMax Gemini
EM spectrophotometer (Molecular Devices).

Statistical analysis. Quantitative data were expressed as the means �
the standard errors. Statistical significance comparisons for samples with
equal variances were determined by using a parametric Student t test for
two unpaired samples. To compare the means of groups of three or more,
data were analyzed for statistical significance by the one-way analysis of
variance (ANOVA), followed by Tukey’s tests for comparison between the
means. Comparison of mouse mortality was performed by using the
Fisher exact test. A significant difference was considered to be P � 0.05.

RESULTS
Glycosylation of Tfp with O-ag is important for resistance to
SP-A-mediated lung clearance. To determine the contribution of
O-ag on Tfp in resistance to SP-A-mediated clearance, we com-
pared the lung infection by the wild-type P. aeruginosa 1244 and
the isogenic glycosyltransferase-deficient �tfpO mutant in a
mouse model of acute pneumonia. At 18 h after intranasal inocu-
lation with 1244, SP-A�/� mice showed no mortality, while SP-
A�/� mice showed a 7/10 mortality. In contrast, the �tfpO mutant
caused no mortality in SP-A�/� mice but only a 1/10 mortality in
the SP-A�/� mice (Fig. 1A). The number of viable �tfpO bacteria
in SP-A�/� mice was significantly higher (2.39 logs) than in SP-
A�/� mice. In contrast, the burden of 1244 bacteria was only 1 log
higher in the SP-A�/� mice than in the SP-A�/� mice (Fig. 1B).
The 1244 and �tfpO mutant strains showed comparable growth
rates, indicating that attenuation in the lungs of mice infected with
the latter was not due to potential growth defects caused by the
gene deletion (Fig. 1C). These data suggest that the presence of
O-glycosylation of Tfp with O-ag allows for increased resistance to
SP-A-mediated lung clearance.

The aforementioned virulence studies were further supported
by histopathological analysis of infected lungs (Fig. 2). The paren-
tal clinical strain 1244 caused moderate bronchopneumonia (Fig.
2A), whereas the �tfpO mutant caused mild bronchopneumonia
(Fig. 2B) in SP-A�/� mice. In contrast, 1244 caused severe bron-
chopneumonia (Fig. 2C), whereas the �tfpO mutant caused only
moderate bronchopneumonia in the lungs of SP-A�/� mice (Fig.
2D). These results indicate that O-glycosylation of Tfp increases
the resistance of P. aeruginosa to SP-A-mediated lung clearance.

O-glycosylation of Tfp does not alter resistance of P. aerugi-
nosa to SP-A-mediated membrane permeabilization. As dis-
cussed above, SP-A mediates its antimicrobial effects by enhanc-
ing microbial clearance through membrane permeabilization and
opsonization (22, 24, 28–32). To further examine whether O-gly-
cosylation of P. aeruginosa Tfp with O-ag increases the resistance
to SP-A-mediated membrane permeability, we measured the
amounts of leaked thiol containing proteins from 1244 versus
�tfpO mutant after exposure to hSP-A. The three 1244, �tfpO,
and �tfpO-comp strains were equally susceptible to SP-A-medi-
ated permeability (Fig. 3). These results indicate that O-glycosy-
lation of Tfp does not modulate susceptibility or resistance to
membrane permeabilization function of SP-A. Thus, SP-A-medi-

ated membrane permeabilization is unlikely to contribute to pref-
erential clearance of the �tfpO mutant strain from SP-A�/� lungs.

O-glycosylation of Tfp increases the resistance of P. aerugi-
nosa to SP-A-mediated phagocytosis. Next, we examined
whether the �tfpO bacteria were more susceptible to SP-A-medi-
ated opsonization. In the presence of 12.5 and 25 �g of SP-A/ml,
�tfpO bacteria were phagocytosed 2.5- to 3.4-fold more efficiently
than the parental strain 1244 (Fig. 4A). Also, we examined the
phagocytosis of �tfpO bacteria in a time-dependent manner. We
found that �tfpO bacteria were more susceptible to SP-A-medi-

FIG 1 O-glycosylation of Tfp allows for increased resistance to SP-A during
acute pneumonia. (A) Mortality rate of SP-A�/� and SP-A�/� mice (n 
 10)
infected with either 1244 or �tfpO. *, P � 0.01 when comparing the mortality
rate of SP-A�/� versus SP-A�/� mice infected by strain 1244 and when com-
paring the mortality rate of SP-A�/� mice infected by 1244 versus the �tfpO
mutant. Statistical analyses were performed by using the Fisher exact test. (B)
Respiratory tract infections with wild-type strain 1244 versus the �tfpO mu-
tant were performed by intranasal inoculation of anesthetized SP-A�/� or
SP-A�/� mice. Mouse lungs were harvested 18 h postinfection for bacterial
enumeration. The data are the mean CFU � the standard errors (SE; n 
 7 per
group). Statistical significance comparisons among various groups were deter-
mined by using one-way ANOVA (P � 0.01). *, P � 0.01 when comparing the
bacterial loads between the 1244 strain versus the �tfpO mutant infecting
SP-A�/� mice, between the 1244 strain versus the �tfpO mutant infecting
SP-A�/� mice versus SP-A�/� mice, and between SP-A�/� mice versus SP-
A�/� mice infected by the �tfpO mutant determined using Tukey’s test. (C)
The growth kinetics of 1244 and �tfpO bacteria were determined by measuring
optical density at 600 nm. The experiments were performed three times inde-
pendently in triplicates. The representative growth curve from one of three
independent experiments is shown.
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ated opsonization than 1244 at 1 h after exposure to RAW 264.7
macrophages (Fig. 4B). Prolonged exposure abolished the differ-
ence of phagocytic efficiency between 1244 and �tfpO strains,
most probably due to the production of exoproteases that de-
graded SP-A, as we had previously reported (28, 32). These obser-
vations were confirmed by in vivo phagocytosis assays, which
showed that �tfpO bacteria were 4.5-fold more susceptible to SP-
A-mediated phagocytosis than was strain 1244 (Fig. 4C). The in
vivo phagocytosis assay measured the total phagocytosis activity
involving both alveolar macrophages and neutrophils. Collec-
tively, these results indicate that O-glycosylation of P. aeruginosa
Tfp promotes resistance to opsonization mediated by host op-
sonins, including the pulmonary SP-A.

O-glycosylation of Tfp specifically confers resistance to op-
sonization by both pulmonary and circulatory opsonins. We
postulated that O-glycosylation of Tfp with O-ag might be specif-
ically required for resistance of P. aeruginosa to opsonization me-
diated by pulmonary and/or circulatory opsonins (30, 31, 33–36).
To test this hypothesis, we examined the phagocytosis of 1244
versus �tfpO bacteria in the absence of SP-A. In contrast to data
presented in Fig. 4, the uptake of 1244 bacteria was indistinguish-
able from that of �tfpO bacteria, suggesting that O-glycosylation
of Tfp was specifically required for conferring resistance to op-
sonization by SP-A (Fig. 5A).

To confirm the findings in Fig. 4 and 5A, we examined the
susceptibility of �tfpO bacteria to other opsonins. Significantly,
when the 1244 and �tfpO strains were preopsonized by pulmo-
nary surfactant protein D (SP-D) and the circulatory opsonin
MBL-2, the phagocytosis of the �tfpO mutant by RAW 264.6 mac-
rophages increased by 55 and 49%, respectively (Fig. 5B and C).
Collectively, these results indicate that O-ag glycosylation of Tfp
specifically confers resistance to opsonization by both pulmonary
and circulatory opsonins.

Glycosylation on flagella of P. aeruginosa is not important
for resistance to SP-A-mediated opsonization. We have previ-
ously shown that flagellum, another prominent appendage of P.
aeruginosa, is important for resistance to SP-A-mediated op-
sonization and membrane permeabilization (32, 37). Similar to
Tfp, the flagella of P. aeruginosa can be classified into two groups
(a-type and b-type) based on the posttranslational O-glycosyla-
tion of flagellins with deoxyhexose (23, 38–44). P. aeruginosa
strain PAK harbors the a-type O-glycosylated flagellins, whereas
strains PAO1 and 1244 have the b-type O-glycosylated flagellins
(41, 44). Originally named rfbC (23), the gene encoding the flagel-
lar glycosyltransferase was later renamed fgtA (PA1091) (44).
Flagellin glycosylation has been reported to be important for vir-

FIG 2 Histopathology of P. aeruginosa-infected lungs. SP-A�/� and SP-A�/� mice were infected with the 1244 strain or the �tfpO mutant as described in Fig.
1. Representative hematoxylin-eosin-stained lung sections from SP-A�/� and SP-A�/� mice (n 
 3) at 18 h after intranasal instillation of 1244 (A and C) and
�tfpO (B and D) bacteria.

FIG 3 O-glycosylation of Tfp does not confer increased resistance to SP-A-
mediated membrane permeabilization. An in vitro ThioGlo assay was per-
formed. 1244, �tfpO, and 1244G7-comp strains were preincubated with 50 �g
of hSP-A/ml for 15 min. The bacterium-free supernatants were then mixed
with ThioGlo. The absorbance was measured at an excitation wavelength of
405 nm and an emission wavelength of 535 nm. *, P � 0.05 when comparing
the relative fluorescence units of SP-A-treated bacteria versus untreated bac-
teria using one-way ANOVA.
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ulence in a burn infection (42). In addition, flagellar glycosylation
plays a role in colonization of the gut by Campylobacter jejuni
81-176 (45). Furthermore, glycosylation of flagellum in the plant-
pathogenic Pseudomonas syringae pv. glycinea has been reported
to determine the recognition of virulence by host plants, resulting
in the hypersensitivity reaction to flagellin (46). Given our data
showing the importance of Tfp glycosylation against opsonization,
we examined the role of flagellin glycosylation in the resistance to
opsonization by SP-A. Interestingly, no significant differences were
noted in SP-A-mediated phagocytosis when comparing 1244, PAO1,
and PAK against their �fgtA mutants deficient in flagellin glycosyla-
tion (Fig. 6).

DISCUSSION

The pilin subunits of the group 1 P. aeruginosa strains, including
strain 1244, are glycosylated with O-ag containing pseudaminic

acid by the TfpO glycosyltransferase. TfpO of group I P. aerugi-
nosa strains has been shown to be important for the overall fitness
of 1244 in the host. In a mixed infection within mouse lungs, the
�tfpO mutant is less competitive against its parental strain 1244
(11). However, the mechanism of attenuation is not clear. We
proposed that one of the mechanisms of higher fitness in 1244 was
due to the increased resistance to SP-A-mediated effects, afforded
by the O-glycosylation of O-ag subunits to each pilin monomer on
Tfp. Using a mouse model of acute pneumonia infection, we
showed that 1244 caused mortality when inoculated into SP-A�/�

mice but no mortality when inoculated in SP-A�/� mice. This
demonstrates the importance of SP-A in innate immune resis-
tance against 1244. Importantly, the cognate glycosyltransferase
�tfpO mutant was attenuated during the infection of SP-A�/�

mice, suggesting that O-ag contributes to the virulence of P.

FIG 4 The �tfpO mutant is more susceptible to SP-A-mediated opsonization. RAW 264.7 macrophages were infected with either 1244 or the �tfpO mutant in
the presence or absence of hSP-A. The ratio of ingested bacteria between those exposed to hSP-A and those unexposed was expressed as the fold increase in
phagocytosis. The changes in phagocytosis were then normalized to 1244, which was set to the baseline value of 1. (A) Phagocytosis of the 1244 and �tfpO strains
in the presence of different concentrations of hSP-A. Bacteria were preincubated with the indicated concentrations of hSP-A for 1 h prior to phagocytosis. (B)
Time-dependent phagocytosis of 1244 versus the �tfpO mutant in the presence of 25 �g of hSP-A/ml. (C) In vivo phagocytosis of 1244 versus the �tfpO mutant.
The fold changes in phagocytosis were determined in SP-A�/� and SP-A�/� mice (n 
 3) and normalized against the phagocytosis in SP-A�/� mice. The changes
in phagocytosis were then normalized to strain 1244, which was set to the baseline value of 1. All phagocytosis experiments were independently performed three
times. The means � the standard errors from a representative experiment are shown. *, P � 0.05 when comparing the numbers of phagocytosed �tfpO mutant
versus 1244 by using one-way ANOVA (A and B) and a parametric Student t test (C).

FIG 5 O-glycosylation of TFP with O-ag confers resistance to pulmonary and circulatory opsonins. (A) Phagocytosis of 1244 and the �tfpO mutant in the
absence of opsonin. The changes in phagocytosis were normalized to strain 1244, which was set to the baseline value of 1. All phagocytosis experiments
were independently performed three times in triplicates. The means � the standard errors from a representative experiment are shown. (B and C)
Phagocytosis of strain 1244 and the �tfpO mutant in the presence or absence of hSP-D and MBL-2. The ratio of ingested bacteria between animals exposed
to hSP-D or MBL-2 versus those unexposed is expressed as the fold increase in phagocytosis. The changes in phagocytosis were then normalized to strain
1244, which was set to the baseline value of 1. All phagocytosis experiments were independently performed three times in triplicates. The means � the
standard errors from a representative experiment are shown. *, P � 0.05 when comparing the number of the phagocytosed �tfpO mutant against strain
1244 by using a parametric Student t test.
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aeruginosa strain 1244 against wild-type mouse lung expressing
SP-A. This conclusion is supported by the finding that the �tfpO
mutant burden is significantly higher in the SP-A�/� mice than in
the SP-A�/� mice. Furthermore, the �tfpO mutant was able to
cause moderate bronchopneumonia in the SP-A�/� mice but was
only able to cause mild bronchopneumonia in the SP-A�/� mice.
These results suggest that O-glycosylation of Tfp with O-ag con-
fers resistance to antimicrobial properties of SP-A.

To further decipher the mechanism of SP-A resistance by 1244,
we examined whether the O-ag on the pilin subunits of Tfp con-
fers resistance to SP-A-mediated opsonization or membrane per-
meability. The presence of O-ag on pilin subunits of Tfp does not
increase the resistance to SP-A-mediated membrane permeability.
Instead, we show that O-glycosylation of Tfp with O-ag confers
resistance to SP-A-mediated opsonization and clearance through
phagocytosis. Under both in vitro and in vivo experimental con-
ditions, the O-glycosylation-deficient �tfpO mutant was more
susceptible to opsonization by hSP-A. However, the increase in
the phagocytosis of the �tfpO mutant is most prominent in vivo.
This is not surprising because the �tfpO mutant is also susceptible
to opsonization by additional pulmonary and circulatory op-
sonins present within the alveolar surfactant layer, including SP-D
and MBL-2.

Previous studies in other microbes have implicated the impor-
tance of O-ag for resistance to phagocytosis, including Vibrio an-
guillarum (47), Burkholderia cenocepacia (48), Salmonella enterica
(49), Escherichia coli (50, 51), Haemophilus ducreyi (52), and Neis-
seria gonorrhoeae (53). In E. coli, S. enterica, H. ducreyi, and N.
gonorrhoeae, it has been noted that O-ag confers resistance to
phagocytosis by masking the N-acetylglucosamine residues of LPS
core polysaccharide, which is the ligand for the dendritic cell-
specific intercellular adhesion molecule nonintegrin (DC-SIGN)/
CD209 (51, 52). However, the role of Tfp glycosylation with O-ag
has not been studied with regard to resistance to SP-A or other
opsonins. The results of the present study indicate that O-glyco-
sylation of Tfp confers not only resistance to phagocytosis by pul-
monary opsonins SP-A and SP-D but also resistance to circulatory
opsonin MBL-2, which presents in lesser abundance in the lung.

Macrophage mannose receptor, a pattern recognition receptor

for various microorganisms, has been shown to be important for
the phagocytosis of microbes (53). In V. anguillarum, it is specu-
lated that O-ag masks putative mannose residues that interact
with the mannose receptors of skin epithelial cells (47). SP-A has
been shown to upregulate the expression of mannose receptor
(54). Upregulation of mannose receptor by SP-A and SP-D is im-
portant in the phagocytosis of Mycobacterium avium by mono-
cyte-derived macrophages (55). Our preliminary analyses suggest
that SP-A-upregulated mannose receptor plays a minimal role in
enhancing the phagocytosis of the �tfpO mutant. This is because
mannose at concentrations �1 mM or �25 times higher than
physiological levels (56) only minimally attenuates phagocytosis
of �tfpO bacteria in the RAW 264.7 murine macrophages (R. M.
Tan and G. W. Lau, unpublished data). However, we cannot rule
out the possibility that this discrepancy may be due to different
macrophages used in the studies. We are currently examining the
interactions between Tfp glycosylation, SP-A, and mannose re-
ceptor using monocyte-derived macrophages.

In summary, we have shown that the glycosylation of O-ag
subunit to Tfp enhances the virulence of P. aeruginosa during
acute pneumonia infection. The increase in virulence is associated
with the resistance to both pulmonary opsonins SP-A and SP-D,
as well as the circulatory opsonin MBL-2, which is found at low
concentrations in the lung. Given that antibiotic-resistant P.
aeruginosa is a serious clinical issue, there is an added urgency to
explore the use of novel, non-antibiotic-based antibacterial pep-
tides to combat life-threatening infections. Unraveling the mech-
anisms governing resistance or susceptibility to SP-A may poten-
tially lead to new treatment strategies for life-threatening lung
infections. Future efforts will investigate the feasibility of using
drugs to disrupt Tfp glycosylation, which may augment the clear-
ance of P. aeruginosa in an opsonin-dependent manner, without
increasing the burden of antibiotic resistance.
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